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Hence
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V1.2 Evaluation of Definite Integrals

Exercise VI.2.1. Find the following integrals:
(a) [Zo, odx =27/3.
(b) Show that for a positive integer n > 2,

/‘°° 1 w/n
dx = — .
o 1+x" sinw/n

[Hint: Try the path from O to R, then from R to Re*"!/", then back to 0, or apply
a general theorem. ]

Solution. (a) Consider the contour shown on the figure, namely a symmetric
segment on the real line and a semicircle in the upper half plane.

We have

B
<mTR—
R6

1
dz
/SR 1+28

for some constant B valid for all large R. This shows that the integral on the
semicircle goes to zero as R tends to infinity, and by the residue formula

./_oo o ldx =27 Z residues of T340 in the upper half plane.

The poles of 1/(1 + z%) in the upper half plane are at the points e™/¢, &'™/2 and
€"7/6_ Moreover, these poles are simple, so we can use the derivative to find the
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residues. It follows that the desired integral is

© ] e=Sin/6  p=Sim/2 ,=25in/2
dx = 2mi
/_oolﬂ6 ¥ =2t —e— )
mif 30 N V3\ 2w
=73 2 2 'T2T )T

(b) We split the contour integral given in the hint in three parts, L the segment
from 0 to R, A the arc from R to Re?/", and L', the segment from Re*™'/" 10 0.

RV

—

v

The integral on the arc tends to 0 as R becomes large because this integral is
estimated by the sup norm of f multiplied by the length of the arc, and because

we assume n > 2
1
/ dz
Ar 1+2z8

The only pole of 1/(1 + z") in the interior of the contour (for large R) is ™'/" and

this pole is simple. The derivative shows that the residue is
le—(n—l)ni/n — __le
n n

Parametrizing L', by e?*/" with 0 < t < R we find that

f ! dZ = —eZni/n/ ! dZ.
Ly 1+2z" Le 1 +27°

Taking the limit as R — oo and using the residue formula we get

< REE
~ n R

wi/n

(1- ez’”'/")/‘oo ! dx = 27ti(_—1e”i/")
0 1+ xn n ’

thus

dx =mnm/n.

(eni/n _ e—m’/n) 00 1
2i /(; 1+ x"
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By Euler’s formula we conclude that

/°° 1 w/n
dx = — .
o l4+x" sinm/n

Exercise VI 2.2. Find the following integrals:
(@) [ 4+1dx = n~/2/2.
) fs° 6_de-_n'/6

Solution. (a) Let f(z) = z%/(1 + z*). To use the contour given in the text, i.e.,
a segment on the real line and a semicircle in the upper half plane (see the first
figure of the preceding exercise) we must show that f decreases rapidly at infinity.
There exists a constant B such that for all large R we have

2

[f@I =< BF =2z whenever |z| =
The integral on the semicircle is estimated by the sup norm of f multiplied by
the length of the semicircle. Hence the integral on the semicircle is bounded by
7w R(B/R?) = n B/R, and therefore this integral tends to 0 as R tends to infinity.
So

o] Z2
x)dx = 2mi residues of in the upper half plane.
f_ _f® > o pp P
The function f(z) has two simple poles in the upper half plane at e**/4 and ¢7//4.

Using the derivative of the denominator and the fact that the numerator is entire,
we find that the residues are

(em'/4)2 (e3ni/4)2

4e3mif4 an 4e9mi/4°

respectively. Hence

em/2 e37ti/2
f(x)dx =2mi T + 2emi/

i

— 7(e—7n/4 + e5m’/4)
m 21_«/_5 _ 72
T2 2] 2

(b) Let f(z) = z2/(1 + z°). The function f is even, so

f " fedx =2 f " fdx,
—00 0

and we are reduced to computing the integral of f over the whole real line. Arguing
like in (a) we see that we can use the same contour, hence

f f(x)dx =2mi Z residues of < in the upper half plane.
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The poles of f are described in part (a) of Exercise 1. Taking into account that z2
is entire we can compute the residues at the poles and obtain

o] e27ri/6 e2m’/2 elOﬂi/G
/:oo fx)dx = 2mi (6e57ri/6 + 657112 + 6e257ri/6>
i

= Ll (e mi/2 4 o737if2 | oo mil2)
3

=—(—z+z—z)

wlhl

The above observation implies that

/O " Fdx = %

as was to be shown.

Exercise V1.2.3. Show that

Solution. Let f(z) = (z — 1)/(z°> — 1). Then there exists a positive constant B
such that for all large R we have
R? B
[f(@D] = B‘“‘g =R
whenever |z| = R. The same argument as in Exercise 1 (a) shows that we can use
the same contour as this exercise, therefore

® x—1
/ —dx =27i Z residues of
—o0 X

-1
1 in the upper half plane.

The simple poles of f in the upper half plane are at the points e2*//5 and ¢*™'/°, so
the residues at these points are

o275 _ B eAmilS _ p2mifs d 4TS 3 o875 _ pAmi/s
5(62m'/5)4 - 5 an 5(e4m'/5)4 - 5
Therefore
/-OO x—1 dx = 2_7t£(e471i/5 _ eZni/S + esni/S _ e47ri/5)
o X3 —1 5
2mi omi/s —2mi/5
= —1(—e +e
5 ( )
27
= T2i sin(2m/5)
2r

- Tl — 2i sin(—27/5)
= 4?7{ sin(2w /5)

as was to be shown.
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2
e—Z
] —dz,
y 2
where y is:

(a) the square with vertices 1 +i,—1+1i,—1 —i,1 —i.
(b) the ellipse defined by the equation

Exercise V1.2.4. Evaluate

(The answer is 0 in both cases.)

Solution. The only singularity of the function e /72 is at the origin. The power
series expansion for the exponential gives

e % 1 2 A

R TR T
so 0 is a pole of order 2. From the above expression we also see that the residue

of e=% /7z? at the origin is 0. By the residue formula we conclude that the answer
to (a) and (b) is 0.

Exercise VL2.5. (a) (% S dx =me ™ ifa > 0.

(b) For any real number a > 0,

0
cosx _
/ ——dx =me “/a.
—0 X°t+a

iax
€

[Hint: This is the real part of the integral obtained by replacing cos x by e'*. ]

Solution. (a) This integral belongs to the section on Fourier transforms: We must
show that f(z) = 1/(1 4 z) goes to 0 fast enough. There exists a constant K such
that for all sufficiently large |z| we have

K
[f(2)] < ZE’

so the decay assumption is satisfied and we can use the formula given in the text
(Theorem 2.2)

o0 iax
/ 11 sdx = 2mi E residues of €' f(z) in the upper half plane.
0 X

The function f has a simple pole at i with residue 1/2i, so

00 iax iai
f e—dx =2mi ¢ — | =mwe ™,
oo 1 +x2 2i

as was to be shown.
(b) Changing variables x = ay we get

®  cosx 1 [ cos(ay)
oL 20X == 7 4y
_o X +a ajJ_ o y+1
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as was to be shown.
Exercise V1.2.6. Leta,b > 0. Let T > 2b. Show that

1 T iaz
——/ ¢ —dz —e b
27i J_rz—1ib

Formulate a similar estimate when a < 0.

Solution. Let f(z) = ¢'9%/(z — ib). Consider the rectangle:

~ .p'\"‘ .
AT T4 T

/
/

L Y L 4b N RT

-T 1'% T

5
7

The only pole of f in this rectangle is at ib and the residue is e =%, so it suffices
< _(1 - e—Ta) +e—Ta,

to show that
27! i Rr Lt rr Ta

where Rr denotes the right vertical segment, Ly the left vertical segment and I'r
the top vertical segment (all with the orientation given on the picture). We begin
with

1 1 T ia(T+ir)
— f= —/ e—."-“.—idt-
27i Jg, 2ni Jo T +it—ib

Putting absolute values we get

1
zrz-fmf

The same estimate holds for the left hand side, namely

1
%fuf

T

1
<— | e*dt=—"(1 -

< e 7).
22T Jo 2nTa

< (1 —e7).

“ 2nTa
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We now estimate the integral on the top segment. With the parametrizationt +i 7,
esT 2T
< -
Since T > 2b, we must have 2T /(T ~ b) < 4 so that
2e —aT

—T <t <T we get
—aT T
i [ =5 [
27i Jr, 7| T 2w J_r [t +iT —ib|
2n T —b’
/14

1
——— <
2mi /r,f -

We see now that our estimate is sharper than the one we wanted to prove.
If a is negative, then a similar argument with a rectangle lying in the lower half

plane gives
1 T eiaZ
- dz — —ba
i ,/_Tz—ib e

1
- aT___l Ta.
< Ta(e )te

Exercise VI.2.7. Let ¢ > 0 and a > 0. Taking the integral over the vertical line,
prove that

0 ifa <1,
1 c+ioo aZ 1
-~ —d == — } =
2mi c—ico < z 2 lfa 1’
1 ifa > 1.

Ifa =1, the integral is to be interpreted as the limit

ct+ioce c+iT
c—ioo T—oo Jooir

[Hint: Ifa > 1, integrate around a rectangle with corners c — Ai, c+ Bi, — X + Bi,
—X — Ai,and let X — oo. Ifa < 1, replace —x by x.]

Solution. Let b = loga so that
az ebz

f@=—=—.
Z

b4
We begin with the case @ = 1. Then b = 0 and we must evaluate the integral

c+ioo 1
/ —dz.
c—ico <

If X > 0, the segment from ¢ — i X to ¢ + i X is parametrized by ¢ + it where

—X <t < X, so that
c+iool X i
/ —dz=/ —dt
c—ico Z _xc+it
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X g X c X t
dt =1 —dt —dt
./;Xc'i‘it l_/_Xcz+,2 +/;XC2+I2

= 2i arctan(X/c)

Now

so letting X — oo we obtain
c+ioo 1 T
/ -dz=2—-=in
c—ioo < 2
and this proves that
1 c+ico ,z 1
— a_dz = —.
278 Jo—ioo 2 2

We now look at the case a > 1 or equivalently b > 0. Suppose X > 0 is large,
and consider the contour:

=X X T, .
Va § Py c+r X
L‘;g \'g N R&
P —>
Y 1
N > *

-X-AX Bx C-AX

Here, Ty denotes the horizontal segment on top, By the horizontal segment on the
bottom, Ly the vertical segment on the left and Ry the vertical segment on the
right and all segments have the orientation given on the picture. If y is the path
defined by

y=Rx+Tx+ Lx+ Bx

the residue formula gives

1 4
E/}, a?dz = Zresidues of finy.

The only pole of f is at the origin and since the numerator is equal to 1 at 0 we
conclude that the right hand side of the above equality is equal to 1. Therefore,
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it suffices to show that the integral over Tx, Lx and By goto 0 as X — oo. We
begin with Ty. This segment is parametrized by ¢ + i X with —X <t < ¢ so that

a? -X eb(t+iX)
/ —dz=/ —dt,
Ty 2 ¢ t+iX

aZ
/ —dz
Ty <

and therefore

c ebt
S/ ———dt
_x lt+iX|

1 [€ 1
< __/ ebtdt - [ebc _ e—bX] ,
X /).y Xb

which implies that

— 0 as X — o0.

aZ
/ —dz
Ty <

For Ly, we use the parametrization —X + ir where —X <t < X so that

at X eb(—X+in)
[ . / i
Ly % X —X +1it

X e—bX
5/ —ar
_x |t +iX]|

e—bX X
< / dr < 2e7%X,
X Jx

Therefore

and this proves that

-0 asX — oc.

aZ
/ —dz
Ly %

Finally, we must show that the integral over By tends to 0 as X — oo. To do this,
we use the parametrization r — i X where —X <t < ¢, and estimating as before
one easily finds that

and this settles the case a > 1.
For the case a < 1 or equivalently b < 0 we consider the following contour:



102 VI. Calculus of Residues

cH X A
T Jx Xex
T
N \ 4
>
o
%
\ YRx
£
B

C-ik "R X-axX

If y = Rx + Tx + Lx + By, then the residue formula gives

1 z
i : gz-—dz = Zresidues of finy.

so it suffices to show that the integral over Ry, Tx and By tend to 0 as X — oo.
To prove this, we argue as before. With the obvious parametrizations we obtain

z
/ a—dz
Tx <
and the right hand side goes to 0 as X — oo. Similarly, we obtain that
Z Z
f ap 2z / 24 b4
By < Rx £
as X — 0 and this concludes the proof.
Exercise V1.2.8. (a) Show that for a > 0 we have
/°° Cos x _n(l+a)

—o0 (X2 + a?)? X T a3

(b) Show that for a > b > 0 we have
/ o Cos x d T 1 1
X = _—— .
o (2 +a®(x2+b?) a? — b2 \be® ae?
Solution. The function sinx is odd so [ sinx/(x* +a*)*dx = 0 and therefore

f"" cosx /°° e I
— = _dx = —_dx.
—o0 (X2 +a?)? —oo (X2 +a?)?

Let f(z) = 1/(z2 + a?)*. We want to find the Fourier transform [° f(x)e"*dx.
An estimate like in Exercise 5 shows that we can apply Theorem 2.2, and therefore

1 c
S;‘3(_[ebx_eb],

— 0 and -0

o0
/ f(x)e*dx = 2mi Z residues of f (2)€'% in the upper half plane.
—00
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The only pole of f in the upper half plane is at ia. We must now find the residue
of f at this pole. We write

1
z—ia)(z+ia)?’

f(z)=(

Now we have

)
(z+ia)? =(z —ia+2ia)? = Qia)™> (1 + ZZiata)

which after expanding becomes

2ia

We also have e/ = ¢ %e/@719) = ¢7%(1 4+ i(z — ia) +-- ) sO

(z +ia)™? = ia)™? (1 B @, . ) i

—-a

@ = — iZ)Z(zm)2 (1 —2 = +---)<1 +iGz—ia)+ ).

Hence

resiq f(z)e's = e’ (_—1 +i) = C(—l—i——ﬂ.

T Qia)? \ia 4a3i
By the residue formula we conclude that
e (1 +a) e (1 +4+a)
4% 2a3

/ f(x)e*dx = 2mi

as was to be shown.
(b) Arguing like in (a) and using the fact that cos is even we find that the desired
integral is equal to % ffooo f(x)e*dx where
_ 1
f@ = (22 +a2)(2 +bY)
We can apply Theorem 2.2. We are only concerned with singularities in the upper

half plane. In this region f has two simple poles one at ia and the other at ib.
Computing the derivative of (z2 + a?) implies that the residue of f(z)e’* atia is

ei(ia) e ¢

I€S;=ia f(Z)elz = (21a)((la)2 + b2) = —(Zia)(az — bz)

Similarly we find that
i) b
(@ + (iby)ia) = T QibyaZ = by’

IeS;=ib f(Z)eiz =
By Theorem 2.2 we obtain

/ f(x)e*dx = 2mi(tes,—ia f(2)e'F +res,—ip f(2)e'?)

_ T e‘“+e’b
TaZ2-»\ a b )
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Conclude.

Exercise VI.29. [[°S5Xdx — n/2. [Hint: Consider the integral of (1 —
eZiX) / x2' ]

Solution. Since the integrand is even, the desired integral is equal to

1 [ sin®x
—/ dx.

2J 0o X2

The trigonometric identity 2 sin” x = 1 — cos 2x, implies

o] S-n2 00 1 — p2x
2/ lzxdsze(/ :f dx).
o X oo X

We have reduced the problem to finding the integral ffooo f(x)dx where f(z) =
(1 — €%72)/7%. The function f has a unique pole at the origin. We take as a path

& . S(R)
™

S
77 2

N '
Vd <

To show that

lim f(dz=0
R—ox S(R)

split the integral and write is as

dZ e2iz
[ [ o
SRy SRy 2

The first integral goes to 0 as R tends to infinity because it is bounded by 7 R/ R?,
namely the sup norm of 1/z2 on S(R) times the length of S(R). The second integral
is estimated exactly like on page 196 of Lang’s book. By the lemma on this same
page we obtain

lim f@)dz = —mires,—o f(2).
e—>0 S(G)

To find the residue, we must use the power series expansion of the exponential

1— (14 2iz4+Qiz%/2 +--)  —2i
fl@)= 1+ 22 +(2 A ZH + terms of higher order.
z z
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Hence the residue of f at the origin is —2i and therefore

© 1 — e2ix
/ >—dx =2m.
oo X

Conclude.

Exercise VL.2.10. ffooo Shdx = “aﬂ for a > 0. The integral is meant to be
interpreted as the limit:

—a—8 a-8 B
lim lim + f + ] .
B—0048—0 —B —a+8 a+s
Selution. Since the sine function is odd, the integral we must compute is equal to
o] eiz
f f(x)dx where f(z) = -
—o00 a

2

The function f has two simple poles, one at a and the other at —a. Consider the
following contour:

3(R)

/ : ‘S_ ( E) Sq.(z)

We must show that

lim f(2)dz = 0.

We argue like on page 196 of Lang’s book. We have
E 4 eiRcosBe—RsinG .
f(@dz = / —————iRe"’do,

SRy y a?— RZe%®

so for all large R we get

n ,—Rsinf 2R /2 .
5 f %Rde — 2__7 / e—RsmGdo.
0 R? —a R*—a 0

f(2)dz

S(R)
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Butif 0 <6 < 7/2, then sin6 > 20/, thus
2R ™2 e T
— / _ _ —R
5——R2_a2f0 e ”dG_Rz_az(l e™™),

and now it is clear that our limit holds.
Now we must evaluate the limits

lim f(@dz and lim f(@dz.
~0Js. 0Js @

A simple modification of the lemma on page 196 of Lang’s book shows that if f

has a pole at x, then

f(ydz

S(R)

lim f(@)dz = mwres,—x f(2).

€0 Js(e)
Writing f as
ei?
)= ——m——
F@ (a—-2)a+2)
we find that
__pla e—ia
res,—q f(2) = and res,—_, f(2) =
2a
Therefore
o] _eia e—ia
dz =
/_mf(Z) z ”( 2 T 2a>
T eia e—ia
~a (E T2 )
o sina
=—
Exercise VI.2.11. ffooo efise’i, dx = ri=mn. Use the indicated contour:
~R + i mo R +mi
A
—-R R

Solution. The sine function is odd, so the desired integral is equal to
it
et et

/00 f(x)dx where f(z) =

To find the singularities of f we must solve ¢? + e~ = 0. Multiplying this
equation by ¢? we get e + 1 = 0. Letting z = x + iy, we get e*e?? = —1.
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Putting absolute values we find x = 0 and this shows that f has singularities at
the points i(;r /2 + kx) where k € Z.

Consider the contour ¥ (R) = y1(R) + y2(R) + y3(R) + y4(R) as shown on the
figure

73 (R)

-‘R*‘T‘- x{_ ’R‘F“.A’
4
\
7 R)Y A B (R)
4

R Y (R) R

The only singularity of f in the interior of the contour is at iz /2. The derivative
of e 4+ e~ % at that point is equal to 2/ which is nonzero so f has a simple pole at
im/2 with

elin/) /2

res;—ix/2 f(2) = YRT

By the residue formula, we get
fdz = me ™2,
v(R)

We now want show that the integral over y;(R) and y4(R) tend to O as R tends to
infinity. We can estimate the integral by

f@dz

72(R)

’

/ eiRe—y
¥2(R) osyzx |€Re + e Rem

and for large R
eiRe-y
eRely + e~Re-ly

< e’ < 1
— eR Ieiy +e—2Re—iy, - eR(l _e—-ZR)'

The last inequality follows from 0 < y < s and the triangle inequality applied to
the denominator and the fact that R is large. It is now clear that the integral of f
over y2(R) tends to 0 as R tends to infinity. A similar argument proves the same
result for the integral of f over y4(R).

Finally, we find the expression of the integral of f over y3(R). Using the
parametrization ¢ + 7 for —R <t < R and being careful about the orientation we



108 VI. Calculus of Residues

—R elttT
/h @4 = /R =TTt
—R it
e
= e_n/ —‘dt
R —et — e !

R it
e
—er [
—R el +e?

=e " f(@)dz.
n(R)

get

So if I denotes the integral we want to evaluate we conclude that
I+e ™I =nmge™?,

and therefore
14

77 4 e-7/2 :
This concludes the exercise.

Exercise VI.2.12. [° 382 dx = 1re™ ifa > 0.

x2+a?

Solution. The integral we wish to evaluate has an even integrand so it is equal to

1 f°° xsinx
= ——dx.
2) wx2+a?
The function x cos x is odd so
o0
/ ;zs_l:;czdx = Im (f f(x)e”‘dx) where f(z) =

Clearly, the function f verifies the hypothesis of Theorem 2.2 so we can apply the
formula

2+a2'

0
f f(x)e*dx = 2mi Z residues of f(z)e'* in the upper half plane.
—00

The function f has simple poles atia and —ia. Since a > 0 we are only concerned
with the pole at ia which is in the upper half plane. Since

b4
D= 0
@ (z—ia)z+ia)
it follows that
. ia . e ¢
reS;—ia f(z)etz — (E) el — 5
Hence

f fx)e*dx = mie™®.
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The observations at the beginning of the exercise imply that
® xsinx 1
———dx = —mwe™°.
/0 x2 4 qa? 2

Exercise VL.2.13. [ £ —dx= 2 forO<a <1

e*+1 sinra

Solution. The solution to this exercise is very much like our answer to Exercise
VI.2.11. Let f(z) = e%*/(e* + 1). The function f has poles at im + 2kmw with
k € Z. Consider the contour ¥ (R) = y1(R) + y2(R) + y3(R) + y4(R) given by

~R+2T% % (R) R+2me

-

N
A

TR) \ % (R)

~N, e N
7

-R o TR R

Taking the derivative of the denominator of f we find that the residue of f atim
is e*7 [e'T = —e*T s0 by the residue formula we obtain

f(dz = —2mie™™ .
v(R)
We must show that the integrals on the sides y»(R) and y4(R) tend to 0 as R tends
to infinity. We estimate the sup norm of f on y»(R) by

eaR

< .
eR —1

aReiay

sup |f(z)| = sup
z€y2(R) 2€¥(R)

eRely + 1

But 0 < a < 1 so we see that the sup norm of f on y2(R) goes to 0 as R tends
to infinity, and since y,(R) has length 27 we conclude that the integral of f over
y2(R) tends to 0 as R tends to infinity. A similar argument shows that the same
conclusion holds for the integral of f over y4(R).

We must now find an expression for the integral of f over y3(R). Arguing like
in Exercise 11 we find that

f@dz = —e*™@ f(2dz.

v3(R) yi(R)

If I denotes the integral we want to compute, we get (letting R — 00)

I — e = 2mie®”
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so that
(errai _ e—nai)
2§

We have therefore proved that I = x/(sin wa).

I =m.

Exercise V1.2.14. (a) [;° ©22F gx = 73/8. Use the contour

(b) Jy° mdx = —m/4.

Solution. (a) We first define the following mysterious function:
_ (logz— 7

T1+22

We take the branch of the logarithm given by deleting the negative imaginary axis
and taking the angle to be —r/2 < 6 < 37/2. Consider the contour given by

f@)

N
T Sk
L X% \‘_
/'\55 1
R -3 ° & R 7
e
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The only singularity of f which is of interest is the simple pole at i. The residue
of f at that pole is

(logi —im/2)?

2i
This is one reason which explains the strange constant 7ri /2 in the definition of f.
By the residue formula, we conclude that f f(2)dz = 0. The integral of f on.Sg
tends to 0 as R — oo because the length of S multiplied by the sup norm on Sg

behaves like R E}‘& which tends to 0 as R tends to infinity. The integral of f on
S5 behaves like (log )?8 which tends to 0 as § — 0.
On the real axis we have

/ Foordx = /-5 (log |x| +i(x/2)) |
7i(R,8) -

=0.

R 1+x2
and
1 —i(n/2))
/ Fooydx = R (log Ix| t(zﬂ/ e
12(R,8) F 1 +x

Letting R —> oo and 8 — O we see that after cancellations (which explain the
choice of our f) we get

0 1 2 % (] 2 2 o g
[P o 1T Py S
oo 14+ x 0 14+x 4 J_ oo 1+x

hence
0 (logx)2 / dx _ 7t3
o 1+ x2 - )
(b) We use the same technique as in (a). Let
logz — 5
7) =
f@) s

We use the same branch of the logarithm and the same contour as in part (a). The
only singularity of f in the upper half plane is at the point i. Our next step is to
find the residue of f at this singularity. Since we can write

logz — 5
f@= (z+ i)z - 1)2
it suffices to find the coefficient of the term z — i in the power series expansion of
(logz — im/2)/(z + i)? near i. We simply have
1 1 -1 —i
= = 2= (1 — 222—,1 + higher order terms) ,
: z—i
(z+1) @iz (1+ %) i

and

—1 n_l _. n __.
logz—in/2=z( : (Z ; l) = Zl_ ! + higher order terms.
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Thus

res;— f(2) = —

The residue formula gives
/ f(@)dz =2mires,; f(z) = :21
14

An argument similar to the one given in (a) shows that the integrals on the
semicircles Sk and Ss tend to 0 as R — oo and § —» 0 respectively. Therefore

0 . .
log|x| +im/2 /“’° log|x| —im/2 -7
——"d ———dx = —.
/_oo «rnz T @rr T2
‘We obtain

*  logx —7
2 ———dx = —,
fo 1T
as was to be shown.

Exercise V12 15. (a) [° 2% = forO<a < 1.

1+x x sinwa

00 x4 —- b4
(b) f 1+x3 * T 3sin(ra/3) forO <a<3

Solution. Let f(z) = 1/(1 + z). Then | f(z)] < C/|z| as |z| —> oo for some
constant C and | f(z)| — 1 as {z] — 0, so we can apply Theorem 2.4 which states
that the integral (a Mellin transform)

/oo f(x)x"éi
X

is equal to —Z5— times the sum of the residues of f(z)z?~ I at the poles of f,
excluding the resmue at 0.
The only pole of f is at —1 and

reSz=_1 f(z)za—l — (_l)a—-l — e(a—l)log(—l) — e(a—l)iﬂ.

—nia

Therefore

o0 a —mia
x? dx = _T¢  @-bir i
o l+xx sinra sinma

(b) As in part (a), we can apply Theorem 2.4, so all we have to do is compute the
residues of f(z)z%~! where f(z) = 1/(1+ z3). The poles of f are at¢'™/3, ¢/™ and
e%7/3 50 the sum of the residues of f(z)z*~! excluding the residue at the origin is

(ein/S)a—l (eirr)a—l (eSiﬂ/3)a—l
3(ein/3)2 3(ei7t)2 3(e5i71/3)2 :

We transform the first term in the following way

in/3ya—1 in/3 ,—i in/3
(e — Qla-in/332in/3 _ et Pe™r _esm
3(e|'71/3)2 3 3
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Making the same transformations to the other terms, we find that the sum of the
residues of f(z)z%~! excluding the residue at the origin is

— _Tl (eairr/3 +eain +eai5n/3)

_eain . )
— _3__ (eaz(—Z)Jr/B +14 eath/3) .
Hence
/m x dx _=w (4D 4 | 4 o273
o 1+x3 x 3sinma
We claim that
e (=2r/3 +1 +eai2n/3 1
sin ra  sin(ra/3)’

Using Euler’s formula 2i sin6 = Y — e~ to write everything with exponentials
and cross multiplying proves our claim.

Exercise VI.2.16. Let f be a continuous function, and suppose that the integral

| " et
0 X

is absolutely convergent. Show that it is equal to the integral
x
f f(eHedtr.
—00

Ifwe put g(t) = f(€"), this shows that the Mellin transform is essentially a Fourier
transform, up to a change of variable.

Solution. We change variables ¢’ = x. Then dx = ¢'dt and therefore

ff(X)x— f f(e)(e)‘” f feHedr.

Exercise V1.2.17. foz m
out to the negative of that ifa > 1.

do = i’;z if 0 < a < 1. The answer comes

Solution. Since this is a trigonometric integral we will apply Theorem 2.3. We
have

1 1 1

f@ = zzl+a2 2a (3 (z+1)) T i-aZ+(+az—a

The roots of the denominator of the second fraction are

_—(+a)+/a -2 S +a?) - /(1 —a’

a= —2a “2a
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If0 < a < 1, the only pole of f in the unit circle is at z; = a and (differentiating
the denominator of the fraction) we find that the residue is

1 1 _ 1
i —2az'+ (1 +a?  i(l—a?’

. 1 _ 2
/Cf(z)dz = 2mi (i(l -—a2)) =10

If a > 1 the only pole of f in the unit circle is at z; = 1/a and the residue is
1 1 _ 1
i —2az' +(1+a% i(-1+a%’

and therefore

hence
2n

Z dz = .
Exercise 51.2.18. ‘/;) —1 Si 3 de = T

Solution. See Exercise 20.

. b4 1
Exercise VL.2.19. [ 5555d0 = Z
Solution. In order to apply Theorem 2.3 we must integrate from 0 to 2. We claim

that
n 1 2 1
f~_1_de=_/ — e
o 3+ 2cosé 2Jo 3+4+2cosb

To prove this claim, we change variables 6 — —# in the first integral so that

4 1 - -1 0 1
f —df =/ —db =/ —df
o 3+ 2cosf o 3+ 2cos(—8) _z 3+2cosb

Now changing variables § — 6 + 2w we get

0 1 2n 1
/ —d&:f ——df
—z 34+ 2cos6 x 3+2cosb

This proves our claim. We must now compute

2 1
—df
/0 3+ 2cosf

and we use Theorem 2.3 with the function

1 1 1
)= — fnd .
/@ iz3+23(z+3) i@ +3z+1)

The zeros of the denominator are

_ =344/5 _=3-45
=== =N

21 and zp = )
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The only pole of f in the unit circle is at z; and the residue is

and therefore
/2” o o1 27
— =2ri— = —.

o 3+2cosf 2i/5 /5

This proves that
/‘ 4 dé _m
o 34+2cosf /5

Exercise VL.2.20. [; —ad0 . — (o7 __adb __ _ _x

a2+sin® 0 142a?—cos 6 T+a2"

Solution. We have

1-— 26 1
a2+sin20=a2+——zos—: 5(2a2+1—cos20),

so changing variables ¢ = 26 we find that

/" add /2” ado o
o a’+sin’6 Jo 1+2a2—-cos® J/1+a2
To compute this last integral, we use Theorem 2.3 with

a _ 2ai
lz1+2a2 (%(z+%)) 22 —Q+4aM)z+ 1

f@@)=

The roots of the denominator are

2 + 4a* + /1642 + 16a* —
+a+2a+ a:1—+—2(12+2|al 1+a2,

22 =1+ 2a%* —2la|V1 + a>.

The only pole of f in the unit circle is at z; and the residue of f at this point is

] =

and

2ai ai

2 -2 +4a0)  2a/ital

and therefore
a b1

ai
()dz =2mi = — .
./Cf —2lalv1+a?2 lal /14 a2

Conclude.

. /2 1 _ mQa+l)
Exercise V1.2.21. 0 md@ a2 tay? fora > 0.

Solution. Using the fact that

1
sin® @ = 5 (1 — cos26)
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and arguing like at the beginning of Exercise 19, one finds after a few linear changes
of variables that

2 1 2 do
———df = .
./(; (a + sin® 9)2 _/(; (2a + 1 —cos8)?

Since we reduced the problem to a trigonometric integral from O to 27 we can
apply Theorem 2.3 with the function.

1 1
f@)=—
#@a+1- 4+ D)
z

i (-2 +@a+ Dz - %)2'

The zeros of the denominator are at the points

21=QRa+1)-2vVa’+a and z, =QRa+1)+2vVa?+a.

Since z; is the only pole of f in the unit circle we must compute the residue of f
at this point. We write

1) = b4 _ 4z
i(1/8z — 22z — 2P iz — )z —22)*
so that the residue of f is equal to the coefficient of z — z; in the power series
expansion of

4z
i(z — 22)?
near z;. To find this coefficient, we first differentiate A and obtain

.4 1 z _4[z=2
h(Z)—tTI:(Z—Zz)z _2(1—22)3] B 7[(3‘22)3]

which we evaluate at z; to obtain the residue of f at z;
4 —4a-2 1 2a+1
i —43a2+a)¥?  8i(a+a)?

h(z) =

res,—,, f(2) =h'(z;) =

Therefore

1 2a+1 w(2a+1)

dz = 2mi— = .
fcf @z = 2mi g @ ¥ apP ~ Ha? 0l

Exercise VI.2.22. 7" -—L_do = 2r//3.

Solution. We will apply Theorem 2.3 with the function
1 1 _ 2
iz2-L(z—1)  —Z2+4iz+1

f@@)=

The roots of the denominator are

21 =2i —iv/3 and z, = 2i +i/3.
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The only pole of f in the unit circle is at z; and the residue of f at this point is

21
2721 +4i i3
Hence
1 2T
(2)dz = 27i— = .
fcf’ i3 h

Exercise VL.2.23. " L do = 240 for0 < b <a.

Solution. We will apply Theorem 2.3 with

O JE— - z
iZ(a+4(z+1)" i(G2+az+8)

The roots of the denominator are

—a + va? — b? —a —a* - b?
'—b—'—'— and 222-——‘5———-———.

The assumption that 0 < b < a implies that the only pole of f in the unit circle
is at z;. We must now compute the residue of f at z;. We have

f@=

Z1 =

Z
. b2 ’
i%(z — 21z — 22)?

so the residue we are looking for is equal to the coefficient of the term z — z; in
the power series expansion of

4z

h(2) = ibY(z — )%

Differentiating # once we find

(D)= — [lz——_zi}

ib? | (z—2)

which evaluated at z; gives

4 2a/b _ a
ib? | 8(vaZ — b3 /b3 i@ — b2)¥/?
which is the residue of f at z;. Thus

2
/f(z)dz:Zm‘_ .
c l(a - b2)3/2 (a2 _ b2)3/2

Exercise VI.2.24. Let n be an even integer. Find

2
/ (cos9)"do
0

by the method of residues.
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Solution. We apply Theorem 2.3 with

1 \"
@ = 5 (z + 2) .

The only pole of f is at the origin. To find the residue of f at 0, we must find
the constant term of (z + )". Since n is even, the constant term is given by the
binomial coefficient

n _ n! _ n!
n/2 | m/2)Wn —n/2)! T (n/2)12’

and therefore, the residue of f at 0 is
n!
Hence
n! 2mn!

2i(n/2)12  27(n/2)2"

2r
/ (cos0)'dO8 = 2mi
0



